题目内容
【题目】如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是( )
A.AC=10
B.AB=15
C.BG=10
D.BF=15
【答案】B
【解析】解:∵△ABC的两条中线AD、CE交于点G,
∴点G是△ABC的重心,
∴AG= AD=6,CG= CE=8,EG= CE=4,
∵AD⊥CE,
∴AC= =10,A正确;
AE= =2 ,
∴AB=2AE=4 ,B错误;
∵AD⊥CE,F是AC的中点,
∴GF= AC=5,
∴BG=10,C正确;
BF=15,D正确,
故选:B.
【考点精析】掌握三角形的“三线”是解答本题的根本,需要知道1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内.
练习册系列答案
相关题目
【题目】如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:
坡度 | 1:20 | 1:16 | 1:12 |
最大高度(米) | 1.50 | 1.00 | 0.75 |
(1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;
(2)求斜坡底部点A与台阶底部点D的水平距离AD.