题目内容
【题目】如图,已知∠DAE=∠B,∠DAB=∠C,则下列结论不成立的是( )
A.AD∥BCB.AB∥CDC.∠DAB+∠B=180°D.∠B=∠C
【答案】D
【解析】
由∠DAE=∠B依据“同位角相等,两直线平行”即可得出AD∥BC即A成立;依据“两直线平行,同旁内角互补”可得出∠DAB+∠B=180°,即C成立;由等量替换即可得出∠B+∠C=180°,即B成立;无法判断D是否成立.由此即可得出结论.
解:A.∵∠DAE=∠B,
∴AD∥BC,故A成立;
C.∵AD∥BC,
∴∠DAB+∠B=180°,
∵∠DAB=∠C,
∴∠B+∠C=180°,故C成立;
B.∵∠B+∠C=180°,
∴AB//CD,故B成立;
D.无法证明∠B=∠C,故D不成立;
故选:D.
练习册系列答案
相关题目