题目内容
【题目】如图①,点P是正方形ABCD的BC边上的一点,以DP为边长的正方形DEFP与正方形ABCD在BC的同侧,连接AC,FB.
(1)请你判断FB与AC又怎样的位置关系?并证明你的结论;
(2)若点P在射线CB上运动时,如图②,判断(1)中的结论FB与AC的位置关系是否仍然成立?并说明理由;
(3)当点P在射线CB上运动时,请你指出点E的运动路线,不必说明理由.
【答案】
(1)FB∥AC,
证明:过F作FM⊥BC于M,
∵四边形ABCD、DEFP是正方形,
∴∠ACB=45°,DC=BC,PF=DP,∠DCP=∠M=∠FPD=90°,
∴∠MFP+∠FPM=∠FPM+∠DPC=90°,
∴∠MFP=∠CPD,
在△PFM和△DPC中
∴△PFM≌△DPC(AAS),
∵DC=PM,FM=PC,
∵DC=BC,
∴BC=DC=PM,
∴PM﹣BP=BC﹣BP,
∴BM=CP,
∵FM=CP,
∴FM=BM,
∵∠M=90°,
∴∠FBM=∠MFB= (180°﹣90°)=45°,
∵∠ACB=45°,
∴∠ACB=∠FBM,
∴FB∥AC
(2)解:结论仍成立,
理由是:过F作FM⊥BC于M,
∵四边形ABCD、DEFP是正方形,
∴∠ACB=45°,DC=BC,PF=DP,∠DCP=∠M=∠FPD=90°,
∴∠MFP+∠FPM=∠FPM+∠DPC=90°,
∴∠MFP=∠CPD,
在△PFM和△DPC中,
,
∴△PFM≌△DPC(AAS),
∵DC=PM,FM=PC,
∵DC=BC,
∴BC=DC=PM,
∴PM+BP=BC+BP,
∴BM=CP,
∵FM=CP,
∴FM=BM,
∵∠M=90°,
∴∠FBM=∠MFB= (180°﹣90°)=45°,
∵∠ACB=45°,
∴∠ACB=∠FBM,
∴FB∥AC
(3)解:当点P在直线BC上移动时,E的轨迹是图中的线段GA.
【解析】(1)通过观察可知二者平行,须延长CB连接MB构造全等三角形△PFM≌△DPC,得出内错角相等,即∠ACB=∠FBM,证得平行;(2)借鉴(1)的思路方法,辅助线仍和原来一样;(3)借鉴(1)(2)的图形,观察图1、2,E点始终在A的正上方,再寻找起始点,结束点,可确定是线段GA.
【考点精析】通过灵活运用正方形的性质,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形即可以解答此题.