题目内容
已知反比例函数和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.
(1)求反比例函数的解析式;
(2)求反比例函数与一次函数两个交点A、B的坐标:
(3)根据函数图像,求不等式>2x-1的解集;
(4)在(2)的条件下, x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.
(1)求反比例函数的解析式;
(2)求反比例函数与一次函数两个交点A、B的坐标:
(3)根据函数图像,求不等式>2x-1的解集;
(4)在(2)的条件下, x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.
(1)∵一次函数的图象经过(a,b),(a+k,b+k+2)两点,
∴b=2a﹣1①,2a+2k﹣1=b+k+2②,
∴整理②得:b=2a﹣1+k﹣2,
∴由①②得:2a﹣1=2a﹣1+k﹣2,
∴k﹣2=0,
∴k=2,
∴反比例函数的解析式为:y==;
(2)解方程组,
解得:,,
∴A(1,1),B(,﹣2);
(3)根据函数图象,可得出不等式>2x﹣1的解集;
即0<x<1或x;
(4)当AP1⊥x轴,AP1=OP1,∴P1(1,0),
当AO=OP2,∴P2(,0),
当AO=AP3,∴P3(2,0),
当AO=P4O,∴P4(﹣,0).
∴存在P点P1(1,0),P2(,0),P3(2,0),P4(﹣,0).
∴b=2a﹣1①,2a+2k﹣1=b+k+2②,
∴整理②得:b=2a﹣1+k﹣2,
∴由①②得:2a﹣1=2a﹣1+k﹣2,
∴k﹣2=0,
∴k=2,
∴反比例函数的解析式为:y==;
(2)解方程组,
解得:,,
∴A(1,1),B(,﹣2);
(3)根据函数图象,可得出不等式>2x﹣1的解集;
即0<x<1或x;
(4)当AP1⊥x轴,AP1=OP1,∴P1(1,0),
当AO=OP2,∴P2(,0),
当AO=AP3,∴P3(2,0),
当AO=P4O,∴P4(﹣,0).
∴存在P点P1(1,0),P2(,0),P3(2,0),P4(﹣,0).
(1)将点(a,b),(a+k,b+k+2)分别代入一次函数解析式,即可得出关于b的等式,即可得出答案;
(2)利用(1)中k的值,得出反比例函数解析式,将两函数组成方程组,求出交点坐标即可;
(3)利用函数图象交点坐标,即可得出不等式>2x﹣1的解集;
(4)分别根据当AP1⊥x轴时,当AO=OP2时,当AO=AP3时,当AO=P4O时,得出答案即可.
(2)利用(1)中k的值,得出反比例函数解析式,将两函数组成方程组,求出交点坐标即可;
(3)利用函数图象交点坐标,即可得出不等式>2x﹣1的解集;
(4)分别根据当AP1⊥x轴时,当AO=OP2时,当AO=AP3时,当AO=P4O时,得出答案即可.
练习册系列答案
相关题目