题目内容
【题目】如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合)我们把这样的两抛物线L1、L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.
(1)如图2,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;
(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;
(3)若抛物y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.
【答案】(1)(4,4);(2)2≤x≤4;(3)a1=-a2,理由如下:见解析
【解析】
(1)设x=0,求出y的值,即可得到C的坐标,把抛物线L3:y=2x28x+4配方即可得到抛物线的对称轴,由此可求出点C关于该抛物线对称轴对称的对称点D的坐标;
(2)由(1)可知点D的坐标为(4,4),再由条件以点D为顶点的L3的“友好”抛物线L4的解析式,可求出L4的解析式,进而可求出L3与L4中y同时随x增大而增大的自变量的取值范围;
(3)根据:抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,可以列出两个方程,相加可得:(a1+a2)(mh)2=0,可得a1=a2.
解:(1)∵抛物线L3:y=2x2-8x+4,
∴y=2(x-2)2-4,
∴顶点为(2,4),对称轴为x=2,
设x=0,则y=4,
∴C(0,4),
∴点C关于该抛物线对称轴对称的对称点D的坐标为:(4,4);
(2)∵以点D(4,4)为顶点的抛物线L4过点(2,-4),
设L4的解析式,
将点(2,-4)代入L4可得,a=-2,
∴L4的解析式为y=-2(x-4)2+4,
L3与L4的两个交点分别为(4,4)和(2,-4)
∴L3与L4中y同时随x增大而增大的自变量的取值范围是:2≤x≤4时;
(3)a1=-a2,
理由如下:
∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,
∴可以列出两个方程,
①+②得:(a1+a2)(m-h)2=0,
∴a1=-a2.