题目内容
(2011•陕西)如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D
(1)求证:AP=AC;
(2)若AC=3,求PC的长.
(1)求证:AP=AC;
(2)若AC=3,求PC的长.
证明:(1)连接AO,则AO⊥PA
,
∴∠AOC=2∠B=120°,
∴∠AOP=60°,
∴∠P=30°,
又∵OA=OC,
∴∠ACP=30°,
∴∠P=∠ACP,
∴AP=AC.
解:(2)在直角△PAO中,∠P=30°,PA=3,
∴AO=PA×tan30°=,∴PO=2;
∵CO=OA=,
∴PC=PO+OC=3.
,
∴∠AOC=2∠B=120°,
∴∠AOP=60°,
∴∠P=30°,
又∵OA=OC,
∴∠ACP=30°,
∴∠P=∠ACP,
∴AP=AC.
解:(2)在直角△PAO中,∠P=30°,PA=3,
∴AO=PA×tan30°=,∴PO=2;
∵CO=OA=,
∴PC=PO+OC=3.
略
练习册系列答案
相关题目