题目内容

【题目】已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.

(1)求出数轴上B点对应的数及AC的距离.

(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.

①当P点在AB之间运动时,则BP=   .(用含t的代数式表示)

②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.

③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数

【答案】(1)30,120(2)①30﹣3t②5或20③﹣15或﹣48

【解析】

(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;

(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP求解;

②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;

③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.

(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,

∴B点对应的数为60﹣30=30;

∵C点到A点距离是B点到A点距离的4倍,

∴AC=4AB=4×30=120;

(2)①当P点在AB之间运动时,

∵AP=3t,

∴BP=AB﹣AP=30﹣3t.

故答案为30﹣3t;

②当P点是A、B两个点的中点时,AP=AB=15,

∴3t=15,解得t=5;

当B点是A、P两个点的中点时,AP=2AB=60,

∴3t=60,解得t=20.

故所求时间t的值为5或20;

③相遇2次.设Q点在往返过程中经过x秒与P点相遇.

第一次相遇是点Q从A点出发,向C点运动的途中.

∵AQ﹣BP=AB,

∴5x﹣3x=30,

解得x=15,

此时P点在数轴上对应的数是:60﹣5×15=﹣15;

第二次相遇是点Q到达C点后返回到A点的途中.

∵CQ+BP=BC,

∴5(x﹣24)+3x=90,

解得x=

此时P点在数轴上对应的数是:30﹣3×=﹣48

综上,相遇时P点在数轴上对应的数为﹣15或﹣48

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网