题目内容
【题目】如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.
(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).
①在直线l上画出A、B两点的位置,并回答:点A运动的速度是 (单位长度/秒);点B运动的速度是 (单位长度/秒).
②若点P为数轴上一点,且PA﹣PB=OP,求的值;
(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?
【答案】(1)①2;4;②4;(2)4或8或或 .
【解析】试题分析:(1)①把A、B两点表示在数轴上,计算出M、N两点的速度即可;
②设点P在数轴上对应的数为x,根据PA-PB=OP,分x的范围求出所求即可;
(2)设再经过m秒,可得MN=4(单位长度),分M与N同向与反向求出所求即可.
试题解析:(1)①画出数轴,如图所示:
可得点M运动的速度是2(单位长度/秒);点N运动的速度是4(单位长度/秒);
故答案为:2,4;
②设点P在数轴上对应的数为x,
∵PA﹣PB=OP≥0,
∴x≥2,
当2≤x≤8时,PA﹣PB=(x+4)﹣(8﹣x)=x+4﹣8+x,即2x﹣4=x,此时x=4;
当x>8时,PA﹣PB=(x+4)﹣(x﹣8)=12,此时x=12,
则或;
(2)设再经过m秒,可得MN=4(单位长度),
若M、N运动的方向相同,要使得MN=4,必为N追击M,
∴|(8﹣4m)﹣(﹣4﹣2m)|=4,即|12﹣2m|=4,
解得:m=4或m=8;
若M、N运动方向相反,要使得MN=4,必为M、N相向而行,
∴|(8﹣4m)﹣(﹣4+2m)|=4,即|12﹣6m|=4,
解得:m=或m=,
综上,m=4或m=8或m=或m=.
【题目】画出函数的图象.
(1)函数的自变量x的取值范围是________;
(2)列表(把表格补充完整)
x | …… | -2 | -1 | 0 | 1 | 2 | 3 | 4 | …… |
y |
(3)描点、连线
(4)结合图象,写出函数的一条性质________________________________________.
【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)①表中a的值为 , 中位数在第组;
②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
组别 | 成绩x分 | 频数(人数) |
第1组 | 50≤x<60 | 6 |
第2组 | 60≤x<70 | 8 |
第3组 | 70≤x<80 | 14 |
第4组 | 80≤x<90 | a |
第5组 | 90≤x<100 | 10 |
【题目】某农场300名职工耕种51公顷土地,计划种植水稻,棉花和蔬菜,已知种植农作物每公顷所需的劳动力人数及投入的设备资金如下表:
农作物品种 | 每公顷需劳动力 | 每公顷需投入资金 |
水稻 | 4人 | 1万元 |
棉花 | 8人 | 1万元 |
蔬菜 | 5人 | 2万元 |
已知该农场计划在设备上投入67万元,应该怎样安排三种农作物的种植面积,才能使所有的职工都有工作,而且投入的资金正好够用?