题目内容
【题目】在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB、BC分别交于点M、N,求证:BM=CN.
【答案】见解析
【解析】
由题意可得AE=DE=AB=CD,∠ABE=∠AEB=∠DEC=∠DCE=45°,可证△ABE≌△DCE,可得BE=CE,由“ASA”可证△BEM≌△CEN,可得BM=CN.
证明:如图,连接BE,CE,
∵四边形ABCD是矩形
∴AB=CD,∠A=∠D=90°
∵AD=2AB,E是AD的中点,
∴AE=DE=AB=CD
∴∠ABE=∠AEB=∠DEC=∠DCE=45°,
∴∠BEC=180°﹣∠AEB﹣∠DEC=90°
∵AB=CD,∠ABE=∠AEB=∠DEC=∠DCE=45°,
∴△ABE≌△DCE(AAS)
∴BE=CE,
∵∠BEN+∠CEN=90°,∠BEM+∠BEN=90°,
∴∠BEM=∠CEN,且BE=CE,∠ABE=∠ECN,
∴△BEM≌△CEN(ASA)
∴BM=CN
【题目】某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该种水果每次降价的百分率;
(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?
时间x(天) | 1≤x<9 | 9≤x<15 | x≥15 |
售价(元/斤) | 第1次降价后的价格 | 第2次降价后的价格 | |
销量(斤) | 80﹣3x | 120﹣x | |
储存和损耗费用(元) | 40+3x | 3x2﹣64x+400 |
(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?