题目内容
【题目】如图,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,.
(1)求直线的表达式;
(2)若直线与矩形有公共点,求的取值范围;
(3)直线与矩形没有公共点,直接写出的取值范围.
【答案】(1);(2);(3)
【解析】
(1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;
(2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;
(3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围.
解:
(1)
,
设直线表达式为,
,解得
直线表达式为;
(2) 直线可以看到是由直线平移得到,
当直线过时,直线与矩形有一个公共点,如图1,
当过点时,代入可得,解得.
当过点时,可得
直线与矩形有公共点时,的取值范围为;
(3) ,
直线过,且,
如图2,直线绕点旋转,当直线过点时,与矩形有一个公共点,逆时针旋转到与轴重合时与矩形有公共点,
当过点时,代入可得,解得
直线:与矩形没有公共点时的取值范围为
练习册系列答案
相关题目