题目内容
【题目】如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2, 0),则点C的坐标为( )
A.(﹣1,)B.(﹣2,)C.(,1)D.(,2)
【答案】A
【解析】
作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH-OB=3-2=1,于是可写出C点坐标.
作CH⊥x轴于H,如图,
∵点B的坐标为(2,0),AB⊥x轴于点B,
∴A点横坐标为2,
当x=2时,y=x=2,
∴A(2,2),
∵△ABO绕点B逆时针旋转60°得到△CBD,
∴BC=BA=2,∠ABC=60°,
∴∠CBH=30°,
在Rt△CBH中,CH=BC=,
BH=CH=3,
OH=BH-OB=3-2=1,
∴C(-1,).
故选:A.
练习册系列答案
相关题目