题目内容

【题目】在△ABC中,AB=AC=6,cos∠B= ,以点B为圆心,AB为半径作圆B,以点C为圆心,半径长为13作圆C,圆B与圆C的位置关系是(
A.外切
B.相交
C.内切
D.内含

【答案】B
【解析】解:∵AB=AC=6,cos∠B= , ∴BC=8,
∵以点B为圆心,AB为半径作圆B,以点C为圆心,半径长为13作圆C,
∴6+13>8,
∴圆B与圆C的位置关系是相交,
故选B.
【考点精析】利用圆与圆的位置关系对题目进行判断即可得到答案,需要熟知两圆之间有五种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交.两圆圆心之间的距离叫做圆心距.两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网