题目内容
【题目】用48米长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形的场地;另一种是围成圆形场地.现请你选择,围成________(圆形、正方形两者选一)场在面积较大.
【答案】圆形
【解析】
根据竹篱笆的长度可知所围成的正方形的边长,进而可计算出所围成的正方形的面积;根据圆的周长公式,可知所围成的圆的半径,进而将圆的面积计算出来,两者进行比较.
围成的圆形场地的面积较大.理由如下:
设正方形的边长为a,圆的半径为R,
∵竹篱笆的长度为48米,
∴4a=48,则a=12.即所围成的正方形的边长为12;2π×R=48,
∴R=,即所围成的圆的半径为,
∴正方形的面积S1=a2=144,圆的面积S2=π×()2=,
∵144<,
∴围成的圆形场地的面积较大.
故答案为:圆形.
练习册系列答案
相关题目
【题目】某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:
每个商品的售价x(元) | … | 30 | 40 | 50 | … |
每天的销售量y(个) | 100 | 80 | 60 | … |
(1)求y与x之间的函数表达式;
(2)设商场每天获得的总利润为w(元),求w与x之间的函数表达式;
(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?