题目内容
【题目】已知:线段AB=20cm.
(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA自B点向A点以3厘米/秒运动,经过________秒,点P、Q两点能相遇.
(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距5cm?
(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60°/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.
【答案】(1)4;(2)3秒或5秒;(3)9cm/s或2.8cm/s.
【解析】
(1)设经过x秒两点相遇,根据总路程为20cm,列方程求解;
(2)设经过a秒后P、Q相距5cm,分两种情况:用AB的长度点P和点Q走的路程;用点P和点Q走的路程AB的长度,分别列方程求解;
(3)由于点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.
解:(1)设经过x秒两点相遇,
由题意得,(2+3)x=20,
解得:x=4,
即经过4秒,点P、Q两点相遇;
故答案为:4.
(2)设经过a秒后P、Q相距5cm,
由题意得,20-(2+3)a=5,
解得:,
或(2+3)a20=5,
解得:a=5,
答:再经过3秒或5秒后P、Q相距5cm;
(3)点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为s或s,
设点Q的速度为ycm/s,
当2s时相遇,依题意得,2y=202=18,解得y=9
当5s时相遇,依题意得,5y=206=14,解得y=2.8
答:点Q的速度为9cm/s或2.8cm/s.
练习册系列答案
相关题目