题目内容
【题目】如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有( )
A. 4对B. 3对C. 2对D. 5对
【答案】A
【解析】
共有四对.分别为△ADO≌△AEO,△ADC≌△AEB,△ABO≌△ACO,△BOD≌△COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.
∵CD⊥AB,BE⊥AC,AO平分∠BAC
∴∠ADO=∠AEO=90°,∠DAO=∠EAO
∵AO=AO
∴△ADO≌△AEO;(AAS)
∴OD=OE,AD=AE
∵∠DOB=∠EOC,∠ODB=∠OEC=90°
∴△BOD≌△COE;(ASA)
∴BD=CE,OB=OC,∠B=∠C
∵AE=AD,∠DAC=∠CAB,∠ADC=∠AEB=90°
∴△ADC≌△AEB;(ASA)
∵AD=AE,BD=CE
∴AB=AC
∵OB=OC,AO=AO
∴△ABO≌△ACO.(SSS)
所以共有四对全等三角形。
故选A.
练习册系列答案
相关题目