题目内容

【题目】某市在城中村改造中,需要种植A、B两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A、B两种树苗的成本价及成活率如表:

品种

购买价(元/棵)

成活率

A

28

90%

B

40

95%

设种植A种树苗x棵,承包商获得的利润为y元.

(1)求y与x之间的函数关系式;

(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?

(3)在达到(2)中政府的要求并获得最大利润的前提下,承包商用绿化队的40人种植这两种树苗,已知每人每天可种植A种树苗6棵或B种树苗3棵,如何分配人数才能使种植A、B两种树苗同时完工.

【答案】(1)y=150000﹣28x﹣40(3000﹣x)=12x+30000(0x3000).

(2)购买A种树苗1200棵,B种树苗1800棵时,承包商应的利润最大,最大利润为44400元.

(3)安排10人种植A种树苗,30人种植B种树苗,恰好同时完工.

【解析】

试题分析:(1)由购买A种树苗x棵,可得出购买B种树苗(3000﹣x)棵,根据“总利润=报价﹣购买A种树苗钱数﹣购买B种树苗钱数”即可得出y关于x的函数关系式;

(2)根据政府要求栽植这批树苗的成活率不低于93%,即可列出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题;

(3)设安排m人种植A种树苗,则有(40﹣m)人种植B种树苗,根据每人每天可种植A种树苗6棵或B种树苗3棵且同时完工,可列出关于m的分式方程,解分式方程求出m的值,检验后即可得出结论.

试题解析:(1)根据题意,得:购买B种树苗(3000﹣x)棵,

y与x之间的函数关系式为y=150000﹣28x﹣40(3000﹣x)=12x+30000(0x3000).

(2)根据题意,得:90%x+95%(3000﹣x)93%×3000,

解得:x1200,

y=12x+30000中k=120,

当x=1200,3000﹣1200=1800时,y取最大值,最大值为44400.

答:购买A种树苗1200棵,B种树苗1800棵时,承包商应的利润最大,最大利润为44400元.

(3)设安排m人种植A种树苗,则有(40﹣m)人种植B种树苗,

根据题意,得: =

解得:m=10.

经检验,m=10是分式方程的解,且符合实际,此时40﹣10=30(人).

答:安排10人种植A种树苗,30人种植B种树苗,恰好同时完工.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网