题目内容

【题目】根据给出的数轴及已知条件,解答下面的问题:

1)已知点ABC表示的数分别为1-3.观察数轴,与点A的距离为3的点表示的数是 AB两点之间的距离为

2)数轴上,点B关于点A的对称点表示的数是

3)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是 ;若此数轴上MN两点之间的距离为2019MN的左侧),且当A点与C点重合时,M点与N点也恰好重合,则点M表示的数是 ,点N表示的数是

4)若数轴上PQ两点间的距离为aPQ的左侧),表示数b的点到PQ的两点的距离相等,将数轴折叠,当P点与Q点重合时,点P表示的数是 ,点Q表示的数是 (用含ab的式子表示这两个数)。

【答案】1)4或-2;(24.5;(3-1010.51008.53b-b+

【解析】

1)分点在A的左边和右边两种情况解答;利用两点之间的距离计算方法直接计算得出答案即可;

2)点B关于点A的对称点在点A右侧,且与BA的距离相等即可求得;

3A点与C点重合,得出对称点位-1,然后根据两点之间的距离列式计算即可得解;

4)根据(3)的计算方法,然后分别列式计算即可得解.

1)点A的距离为3的点表示的数是1+3=41-3=-2

AB两点之间的距离为1-=

故答案为:4或-2

2)设点B关于点A的对称点表示的数是x

x-1=1-()

解得x=4.5

故答案为:4.5

3B点重合的点表示的数是:-1+[-1-]=

M=-1-=-1010.5n=-1+=1008.5

故答案为:-1010.51008.5

4P=b-Q=b+

故答案为:b-b+

练习册系列答案
相关题目

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网