题目内容
【题目】如图,已知以E(3,0)为圆心,5为半径的☉E与x轴交于A,B两点,与y轴交于C点,抛物线y=ax2+bx+c(a≠0)经过A,B,C三点,顶点为F.
(1)求A,B,C三点的坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)已知M为抛物线上的一动点(不与C点重合),试探究:①若以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;
②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与☉E的位置关系,并说明理由.
【答案】(1)A(-2,0),B(8,0),C(0,-4);(2)抛物线的解析式为y=x2-x-4,F;(3)①所点M的坐标为(6,-4),(+3,4),(-+3,4);②若M点位于第四象限,则M点即为M1点,此时直线MF和☉E相切,理由见解析.
【解析】分析:(1)由题意可直接得到点A、B的坐标,连接CE,在Rt△OCE中,利用勾股定理求出OC的长,则得到点C的坐标;
(2)已知点A、B、C的坐标,利用交点式与待定系数法求出抛物线的解析式,由解析式得到顶点F的坐标;
(3)①△ABC中,底边AB上的高OC=4,若△ABC与△ABM面积相等,则抛物线上的点M须满足条件:|yM|=4.因此解方程yM=4和yM=-4,可求得点M的坐标;
②如解答图,作辅助线,可求得EM=5,因此点M在 E上;再利用勾股定理求出MF的长度,则利用勾股定理的逆定理可判定△EMF为直角三角形,∠EMF=90°,所以直线MF与 E相切.
详解:(1)由题图可得点A的横坐标为3-5=-2,点B的横坐标为3+5=8,
连接CE,则CE=5,又OE=3,
∴OC==4,
∴A(-2,0),B(8,0),C(0,-4).
(2)把(-2,0),(8,0),(0,-4)代入y=ax2+bx+c,得.
解得
∴抛物线的解析式为y=x2-x-4.
∵EF∥y轴,∴点F的横坐标为3.
把x=3代入y=x2-x-4,得y=-,
∴F.
(3)①如图所示,连接AC,BM1,BC,
易知=S△ABC,△ABM1与△ABC同底等高,
点C与点M1关于直线x=3对称,
M1(6,-4).
把y=4代入y=x2-x-4,得x2-x-4=4,
解得x1=+3,x2=-+3,
∴M2(+3,4),M3(-+3,4).
∴所有符合条件的点M的坐标为(6,-4),(+3,4),(-+3,4).
②若M点位于第四象限,则M点即为M1点,此时直线MF和☉E相切.
理由如下:M1(6,-4),圆心E(3,0),点F,
连接M1E.
利用勾股定理得M1E=5,M1F=,又EF=,
∴M1E2+M1F2=EF2,即∠FM1E=90°,
∴M1E⊥M1F.
∵M1E是☉E的半径,
∴直线M1F和☉E相切,
即当M点位于第四象限时,直线MF与☉E相切.
【题目】2014年全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.
组别 | 焦点话题 | 频数(人数) |
A | 食品安全 | 80 |
B | 教育医疗 | m |
C | 就业养老 | n |
D | 生态环保 | 120 |
E | 其他 | 60 |
请根据图表中提供的信息解答下列问题:
(1)填空:m= ,n= .扇形统计图中E组所占的百分比为 %;
(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;
(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?
【题目】市园林处为了对一段公路进行绿化,计划购买,两种风景树共900棵.,两种树的相关信息如下表:
品种 项目 | 单价(元棵) | 成活率 |
80 | ||
100 |
若购买种树棵,购树所需的总费用为元.
(1)求与之间的函数关系式;
(2)若购树的总费用不超过82 000元,则购种树不少于多少棵?
(3)若希望这批树的成活率不低于,且使购树的总费用最低,应选购,两种树各多少棵?此时最低费用为多少?