题目内容
【题目】如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_____.
【答案】8﹣π
【解析】分析:
如下图,过点D作DH⊥AE于点H,由此可得∠DHE=∠AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,结合∠ABO+∠BAO=90°可得∠BAO=∠DEH,从而可证得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得阴影部分的面积.
详解:
如下图,过点D作DH⊥AE于点H,
∴∠DHE=∠AOB=90°,
∵OA=3,OB=2,
∴AB=,
由旋转的性质结合已知条件易得:DE=EF=AB= ,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,
又∵∠ABO+∠BAO=90°,
∴∠BAO=∠DEH,
∴△DEH≌△BAO,
∴DH=BO=2,
∴S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF
=
=.
故答案为:.
【题目】某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:
组号 | 分组 | 频数 |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值;
(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;
(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).
【题目】为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):
编号 类型 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 | 十 |
甲种电子钟 | 1 | -3 | -4 | 4 | 2 | -2 | 2 | -1 | -1 | 2 |
乙种电子钟 | 4 | -3 | -1 | 2 | -2 | 1 | -2 | 2 | -2 | 1 |
(1) 计算甲、乙两种电子钟走时误差的平均数;
(2) 计算甲、乙两种电子钟走时误差的方差;
(3) 根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?