题目内容

【题目】在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.

(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;

(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,

(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.

【答案】(1)AGDG,AG=DG;(2)AGGD,AG=DG;(3)DG=AGtan

【解析】

试题分析:(1)延长DG与BC交于H,连接AH、AD,先证BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,再证ABH≌△ACD,得出BAH=CAD,AH=AD,进而求得HAD=90°,即可求得AGGD,AG=GD;

(2)延长DG与BC交于H,连接AH、AD,先证BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,再证ABH≌△ACD,得出BAH=CAD,AH=AD,进而求得HAD是等边三角形,即可证得AGGD,AG=DG;

(3)延长DG与BC交于H,连接AH、AD,先证BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,再证ABH≌△ACD,得出BAH=CAD,AH=AD,进而求得HAD是等腰三角形,即可证得DG=AGtan

试题解析:(1)AGDG,AG=DG,证明如下:延长DG与BC交于H,连接AH、AD,四边形DCEF是正方形,DE=DC,DECF,∴∠GBH=GED,GHB=GDE,G是BC的中点,BG=EG,在BGH和EGD中∵∠GBH=GED,GHB=GDE,BG=EG,∴△BGH≌△EGD(AAS),BH=ED,HG=DG,BH=DC,AB=AC,BAC=90°,∴∠ABC=ACB=45°,∵∠DCF=90°,∴∠DCB=90°,∴∠ACD=45°,∴∠ABH=ACD=45°,在ABH和ACD中AB=AC,ABH=ACD,BH=CD,∴△ABH≌△ACD(SAS),∴∠BAH=CAD,AH=AD,∵∠BAH+HAC=90°,∴∠CAD+HAC=90°,即HAD=90°,AGGD,AG=GD;

(2)AGGD,AG=DG;证明如下:延长DG与BC交于H,连接AH、AD,四边形DCEF是正方形,DE=DC,DECF,∴∠GBH=GED,GHB=GDE,G是BC的中点,BG=EG,在BGH和EGD中∵∠GBH=GED,GHB=GDE,BG=EG,∴△BGH≌△EGD(AAS),BH=ED,HG=DG,BH=DC,AB=AC,BAC=DCF=60,∴∠ABC=60°,ACD=60°,∴∠ABC=ACD=60°,在ABH和ACD中AB=AC,ABH=ACD,BH=CD,∴△ABH≌△ACD(SAS),∴∠BAH=CAD,AH=AD,∴∠BAC=HAD=60°AGHD,HAG=DAG=30°,tanDAG=tan30°=AG=DG

(3)DG=AGtan证明如下:延长DG与BC交于H,连接AH、AD,四边形DCEF是正方形,DE=DC,DECF,∴∠GBH=GED,GHB=GDE,G是BC的中点,BG=EG,在BGH和EGD中GBH=GED,GHB=GDE,BG=EG,∴△BGH≌△EGD(AAS),BH=ED,HG=DG,BH=DC,AB=AC,BAC=DCF=α,∴∠ABC=90°﹣ACD=90°﹣∴∠ABC=ACD,在ABH和ACD中,AB=AC,ABH=ACD,BH=CD,∴△ABH≌△ACD(SAS),∴∠BAH=CAD,AH=AD,∴∠BAC=HAD=α;AGHD,HAG=DAG=tanDAG=tan=DG=AGtan

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网