题目内容
【题目】如图,在△ABC中,CA=CB,AB=10,0°<∠C<60°,AF⊥BC于点F,在FC上截取FD=FB,点E是AC上一点,连接DA、DE,且∠ADE=∠B.
(1)求证:ED=EC;
(2)若∠C=30°,求BD长;
(3)在(2)的条件下,将图中△DEC绕点D逆时针旋转得到△DE′C′,请问在旋转的过程中,以点C、E、C′、E′为顶点的四边形可以构成平行四边形吗?若可以,请求出该平行四边形的面积,若不可以,请说明理由.
【答案】(1)见解析;(2)BD=10;(3)可以,见解析,.
【解析】
(1)先判断出∠C=180°-2∠ABC,∠CDE=180°-2∠ABC,进而求出∠C=∠CDE,即可得出结论;(2)先求出角BAD=30°,进而求出BG,AG,即可得出DG,最后用勾股定理即可得出结论;(3)先判断出旋转到C落在CB的延长线上,以点C,E,C’,E’为顶点的四边形是平行四边形,再求出DH,DE即可得出结论.
解:(1)∵AC=BC,
∴∠ABC=∠BAC,
∴∠C=180°-∠ABC-∠BAC=180°-2∠ABC,
∵AF⊥BC,BF=DF,
∴AB=AD,
∴∠ADB=∠ABC,
∴∠CDE=180°-∠ADE-∠ADB=180°-2∠ABC
∴∠CDE=∠C,
∴ED=CE;
(2)∵∠C=30°,
∴∠ABC=∠ADB=∠BAC=∠ADE=75°,
∴∠BAD=30°,
过点B作BG⊥AD于G,如图1,
在Rt△ABG中,AB=10,∠BAD=30°,
∴BG=5,AG=5
∴DG=AD-AG=10-5=5(2-)
在Rt△BDG中,BD=
(3)存在,理由:
如图2,当点C’落在CB延长线上,点E’落在ED的延长线上,
由旋转知DE=DE’,DC=DC’
∴四边形CEC’E’是平行四边形,
过点D作DH⊥AC于H,
在Rt△ADH中,AD=10,∠DAH=∠BAC-∠BAD=45°,
∴DH=5
在Rt△DEH中,∠AED=∠ACB+∠CDE=60°,
∴∠EDH=30°,
∴DE=
∴CE=
∴S平行四边形CEC’E’=4S△CDE=