题目内容

【题目】已知:如图,正方形ABCDBMDN分别是正方形的两个外角平分线,∠MAN45°,将∠MAN绕着正方形的顶点A旋转,边AMAN分别交两条角平分线于点MN,联结MN

1)求证:△ABM∽△NDA

2)联结BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.

【答案】1)见解析;(222.5°.

【解析】

1)由正方形ABCDBMDN分别是正方形的两个外角平分线,可证得∠ABM=ADN=135°,又由∠MAN=45°,可证得∠BAM=AND=45°-DAN,即可证得ABM∽△NDA
2)由四边形BMND为矩形,可得BM=DN,然后由ABM∽△NDA,根据相似三角形的对应边成比例,可证得BM2=AB2,继而求得答案.

1)证明:∵四边形ABCD是正方形,

∴∠ABC=∠ADC=∠BAD90°AB=AD

BMDN分别是正方形的两个外角平分线,

∴∠ABM=∠ADN135°

∵∠MAN45°

∴∠BAM=∠AND45°﹣∠DAN

∴△ABM∽△NDA

2)解:∵四边形BMND为矩形,

BMDN

∵△ABM∽△NDA

BM2AB2

BMAB

∴∠BAM=∠BMA22.5°

练习册系列答案
相关题目

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网