题目内容
如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.
(1)求抛物线的解析式;
(2)求抛物线顶点D的坐标;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.
解:(1)设该抛物线的解析式为y=ax2+bx+c,
由抛物线与y轴交于点C(0,-3),可知c=-3.
即抛物线的解析式为y=ax2+bx-3把A(-1,0)、B(3,0)代入,
得
①×3+②得3a-3b-9+9a+3b-3=0,即12a=12,
解得a=1,b=-2.
∴抛物线的解析式为y=x2-2x-3;
(2)∵y=x2-2x-3
=(x2-2x+1)-4,
=(x-1)2-4,
∴顶点D的坐标为(1,-4);
(3)连接AC,
易得:CD=,BC=3,BD=2,
∴CD2+DB2=BC2,
可知Rt△COA∽Rt△BCD,得符合条件的点为O(0,0)
过A作AP1⊥AC交y轴正半轴于P1,可知Rt△CAP1∽Rt△COA∽Rt△BCD,
求得符合条件的点为.
过C作CP2⊥AC交x轴正半轴于P2,可知Rt△P2CA∽Rt△COA∽Rt△BCD,
求得符合条件的点为P2(9,0).
∴符合条件的点有三个:(0,0),,P2(9,0).
分析:(1)利用待定系数法将A(-1,0)、B(3,0),C(0,-3),代入y=ax2+bx+c,求出二次函数解析式即可;
(2)利用配方法直接求出顶点坐标即可;
(3)根据相似三角形的判定方法分别得出即可.
点评:此题主要考查了二次函数的综合应用以及相似三角形的判定等知识,相似三角形与二次函数经常结合出综合题目,所以同学们学要对这些知识熟练地掌握才能正确的解答.
由抛物线与y轴交于点C(0,-3),可知c=-3.
即抛物线的解析式为y=ax2+bx-3把A(-1,0)、B(3,0)代入,
得
①×3+②得3a-3b-9+9a+3b-3=0,即12a=12,
解得a=1,b=-2.
∴抛物线的解析式为y=x2-2x-3;
(2)∵y=x2-2x-3
=(x2-2x+1)-4,
=(x-1)2-4,
∴顶点D的坐标为(1,-4);
(3)连接AC,
易得:CD=,BC=3,BD=2,
∴CD2+DB2=BC2,
可知Rt△COA∽Rt△BCD,得符合条件的点为O(0,0)
过A作AP1⊥AC交y轴正半轴于P1,可知Rt△CAP1∽Rt△COA∽Rt△BCD,
求得符合条件的点为.
过C作CP2⊥AC交x轴正半轴于P2,可知Rt△P2CA∽Rt△COA∽Rt△BCD,
求得符合条件的点为P2(9,0).
∴符合条件的点有三个:(0,0),,P2(9,0).
分析:(1)利用待定系数法将A(-1,0)、B(3,0),C(0,-3),代入y=ax2+bx+c,求出二次函数解析式即可;
(2)利用配方法直接求出顶点坐标即可;
(3)根据相似三角形的判定方法分别得出即可.
点评:此题主要考查了二次函数的综合应用以及相似三角形的判定等知识,相似三角形与二次函数经常结合出综合题目,所以同学们学要对这些知识熟练地掌握才能正确的解答.
练习册系列答案
相关题目