题目内容

【题目】动手操作:

(1)如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD= 度;

(2)如图2,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;

(3)灵活应用:请你直接利用以上结论,解决以下列问题:如图3,BE平分∠ABD,CE平分∠ACD,若∠BAC=40°,∠BDC=120°,求∠BEC的度数。

【答案】(1)60°;(2)猜想:∠A+∠B+∠C=∠BDC ,证明见解析;(3)∠BEC=80°;

【解析】试题分析:(1)在△BDC中,由三角形内角和定理可得∠DBC+∠DCB=90°,再由∠ABC+∠ACB=150°,从而可得;

(2)连接BC,利用三角形内角和定理推导即可得;

(3)由(2)可知∠A+∠ABD+∠ACD=∠BDC,∠A+∠ABE+∠ACE=∠BEC,再根据角平分线的定义即可得.

试题解析:(1)60°;

(2)猜想:∠A+∠B+∠C=∠BDC ;

证明如下:连接BC,

在△DBC中,∵∠DBC+∠DCB+∠D=180°,

∴∠DBC+∠DCB=180°﹣∠BDC;

在Rt△ABC中,

∵∠ABC+∠ACB+∠A=180°,

即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,

而∠DBC+∠DCB=180°﹣∠BDC,

∴∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,

即:∠A+∠B+∠C=∠BDC.

(3)灵活应用:

由(2)可知∠A+∠ABD+∠ACD=∠BDC,∠A+∠ABE+∠ACE=∠BEC,

∵∠BAC=40°,∠BDC=120°,

∴∠ABD+∠ACD=120°﹣40°=80°

∵BE平分∠ABD,CE平分∠ACB,

∴∠ABE+∠ACE=40°,

∴∠BEC=40°+40°=80°;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网