题目内容
【题目】如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
(1)求证:OE是CD的垂直平分线.
(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.
【答案】(1)证明见解析;(2) OE=4EF.
【解析】试题分析:(1)先证△ODE≌△OCE,得出△DOC是等腰三角形,再根据等腰三角形三线合一得出OE是CD的垂直平分线;(2)分别求出∠AOE=30°,∠EDF=30°,根据直角三角形中,30°所对的直角边等于斜边的一半求解.
解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,
∴DE=CE,又∵OE=OE,
∴Rt△ODE≌Rt△OCE,
∴OD=OC,
∴△DOC是等腰三角形,
又∵OE是∠AOB的平分线,
∴OE是CD的垂直平分线;
(2)∵OE是∠AOB的平分线,∠AOB=60°,
∴∠AOE=∠BOE=30°,
∵ED⊥OA,CD⊥OE,
∴OE=2DE,∠ODF=∠OED=60°,
∴∠EDF=30°,
∴DE=2EF,
∴OE=4EF.
练习册系列答案
相关题目