题目内容
【题目】如图,已知点、分别为数轴上的两点,点对应的数是,点对应的数是.现在有一动点从点出发,以每秒个单位长度的速度向右运动,同时另一动点从点出发以每秒个单位长度的速度向左运动.
(1)与、两点相等的点所对应的数是_________.
(2)两动点、相遇时所用时间为________秒;此时两动点所对应的数是_________.
(3)动点所对应的数是时,此时动点所对应的数是_________.
(4)当动点运动秒钟时,动点与动点之的距离是________单位长度.
(5)经过________秒钟,两动点、在数轴上相距个单位长度.
【答案】30; 20; 40; 52; 25; 12或28.
【解析】
(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;
(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;
(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;
(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;
(5)根据题意,分两种情况进行解答,即:①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.
解:(1)AB的中点C所对应的数为:
(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)
80-2t=80-2×20=40,或-20+3×20=40
∴此时两动点所对应的点为40;
(3)22-(-20)=42, 80-42÷3×2=52
∴动点所对应的数是时,此时Q所对应的数为52;
(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25
(5)P、Q两点相距40个单位长度,分两种情况
AB=80-(-20)=100
①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)
②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)
∴经过12或28秒钟,两动点、在数轴上相距个单位长度.