题目内容
【题目】如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一动点,G是BC边上的一动点,GE∥AD分别交AC、BA或其延长线于F、E两点
(1)如图1,当BC=5BD时,求证:EG⊥BC;
(2)如图2,当BD=CD时,FG+EG是否发生变化?证明你的结论;
(3)当BD=CD,FG=2EF时,DG的值= .
【答案】
(1)
证明:如图1,
∵∠BAC=90°,AB=2,AC=4,
∴BC=2 ,
∵BC=5BD,
∴BD= ,
∴ = =
又∵∠DBA=∠ABC,
∴△BDA∽△BAC,
∴∠BDA=∠BAC=90°,
∵EG∥AD,
∴EG⊥BC.
(2)
证明:FG=EG=2 不变,
证法1:如图2,
∵EG∥AD,
∴△CFG∽△CAD,
∴ = ,
同理 = ,
∵BD=CD,
∴ + = + =2,
∴EG+FG=2AD,
∵BD=CD,∠BAC=90°,
∴AD= BC= ,
∴EG+FG=2AD=2 .
证法2:如图3,
取EF的中点,易证四边形ADGH是平行四边形,
得出EG+FG=2GH=2AD=2 .
证法3:如图4,
中线AD加倍到M,易证四边形AMNE是平行四边形,
得出EG+FG=EN=AM=2AD=2 .
(3)
或
【解析】(3)如图5,
当BD=CD,FG=2EF时,
则GE=EF,
∵GE∥AD,AD∥GF,
∴△CFG∽△CAD,△ABD∽△BGE,
∴ = , = ,
∴ = = ;
又BG+CG=2 ,
∴BG= ,
∴DG=BD=BG= ;
如图6,
当BD=CD,FG=2EF时,
则GE=EF,
∵GE∥AD,AD∥GF,
∴△CFG∽△CAD,△ABD∽△AGE,
∴ = , = ,
∴ = = ;
又BG+CG=2 ,
∴CG= ,
∴DG=CD﹣CG= .
综上所知DG为 或 .
【考点精析】利用勾股定理的概念对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.