题目内容
【题目】如图,抛物线交x轴于A,B两点,交y轴于点C.直线经过点A,C.
(1)求抛物线的解析式;
(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.
①当是直角三角形时,求点P的坐标;
②作点B关于点C的对称点,则平面内存在直线l,使点M,B,到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线的解析式.(k,b可用含m的式子表示)
【答案】(1)(2)①或,②直线l的解析式为,或.
【解析】
(1)利用一次函数图象上点的坐标特征可求出点A,C的坐标,根据点A,C的坐标,利用待定系数法可求出二次函数解析式;
(2)①由PM⊥x轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑:(i)当∠MPC=90°时,PC∥x轴,利用二次函数图象上点的坐标特征可求出点P的坐标;(ii)当∠PCM=90°时,设PC与x轴交于点D,易证△AOC∽△COD,利用相似三角形的性质可求出点D的坐标,根据点C,D的坐标,利用待定系数法可求出直线PC的解析式,联立直线PC和抛物线的解析式成方程组,通过解方程组可求出点P的坐标.综上,此问得解;
②利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可得出点B,M的坐标,结合点C的坐标可得出点B′的坐标,根据点M,B,B′的坐标,利用待定系数法可分别求出直线BM,B′M和BB′的解析式,利用平行线的性质可求出直线l的解析式.
解:(1)当时,,
点C的坐标为;
当时,,
解得:,
点A的坐标为.
将,代入,得:
,解得:,
抛物线的解析式为.
(2)①轴,
,
分两种情况考虑,如图1所示.
(i)当时,轴,
点P的纵坐标为﹣2.
当时,,
解得:,,
点P的坐标为;
(ii)当时,设PC与x轴交于点D.
,,
.
又,
,
,即,
,
点D的坐标为.
设直线PC的解析式为,
将,代入,得:
,解得:,
直线PC的解析式为.
联立直线PC和抛物线的解析式成方程组,得:,
解得:,,
点P的坐标为.
综上所述:当是直角三角形时,点P的坐标为或.
②当y=0时,,
解得:x1=-4,x2=2,
∴点B的坐标为(2,0).
∵点C的坐标为(0,-2),点B,B′关于点C对称,
∴点B′的坐标为(-2,-4).
∵点P的横坐标为m(m>0且m≠2),
∴点M的坐标为,
利用待定系数法可求出:直线BM的解析式为,直线B′M的解析式为,直线BB′的解析式为y=x-2.
分三种情况考虑,如图2所示:
当直线l∥BM且过点C时,直线l的解析式为,
当直线l∥B′M且过点C时,直线l的解析式为,
当直线l∥BB′且过线段CM的中点时,直线l的解析式为,
综上所述:直线l的解析式为,或.
【题目】小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值.
x | … | 0 | 1 | 2 | 3 | 4 | … | ||||||
y | … | 2 | 4 | 2 | m | … |
表中m的值为________________;
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出函数的大致图象;
(4)结合函数图象,请写出函数的一条性质:______________________.
(5)解决问题:如果函数与直线y=a的交点有2个,那么a的取值范围是______________ .