题目内容

如图,已知⊙O的半径为2,弦AB的长为2
3
,点C与点D分别是劣弧AB与优弧ADB上的精英家教网任一点(点C、D均不与A、B重合).
(1)求∠ACB;
(2)求△ABD的最大面积.
分析:(1)连接OA、OB,作OE⊥AB,E为垂足,要求∠ACB的度数,根据圆内接四边形的性质只需求得∠ADB的度数,
再根据圆周角定理只需求得圆心角∠AOB的度数,根据等腰三角形的三线合一,只需求得∠AOE的度数,
根据垂径定理求得AE的长,根据锐角三角函数即可由边之间的关系求得∠AOE的度数,进一步求得∠AOB的度数;
(2)要求△ABD的最大面积,由于AB是个定值,只需使AB边上的高最大,即点D是优弧AB的中点,即作DF⊥AB,当DF经过圆心O时,DF取最大值.根据半径和AB的弦心距即可求得.
解答:精英家教网解:(1)连接OA、OB,作OE⊥AB于E,
∵OA=OB,∴AE=BE,
Rt△AOE中,OA=2,AE=
3

所以sin∠AOE=
3
2

∴∠AOE=60°,(2分)
∠AOB=2∠AOE=120°,
又∠ADB=
1
2
∠AOB,
∴∠ADB=60°,(3分)
又四边形ACBD为圆内接四边形,
∴∠ACB+∠ADB=180°,
从而有∠ACB=180°-∠ADB=120°;(5分)

(2)作DF⊥AB,垂足为F,则:S△ABD=
1
2
×2
3
DF,(6分)
显然,当DF经过圆心O时,DF取最大值,
从而S△ABD取得最大值,
此时DF=DO+OF=2+2sin30°=3,s△ABD=
1
2
×6
3

即△ABD的最大面积是3
3
.         (7分)
点评:(1)中,主要是能够把已知的线段构造到一个直角三角形中,也可以作直径AM,根据锐角三角函数的知识求得角的度数,再进一步根据圆周角定理和圆内接四边形的性质进行计算;
(2)中,能够分析出面积最大值时,点D的位置.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网