题目内容
【题目】如图,在矩形中,是边的中点,,垂足为点,连接,有下列五个结论:①;②;③;④;⑤.其中正确结论的个数是( )
A.1B.C.D.
【答案】D
【解析】
①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB;
②由,又AD∥BC,所以,故可得CF=2AE;
③过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出,得到CN=NF,根据线段的垂直平分线的性质可得结论;
④设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,得出,进而得出;
⑤由AE∥BC,推出,设S△AEF=S△DEF=m,推出S△ABF=2m,S△BFC=4m,S矩形ABCD=12m,S矩形BCDF=8m,推出S△ABF:S四边形BCDF=1:4,故⑤正确
∵四边形ABCD是矩形,
∴AD∥BC,∠ABC=90°,AD=BC,
∵BE⊥AC于点F,
∴∠EAC=∠ACB,∠ABC=∠AFE=90°,
∴△AEF∽△CAB,故①正确;
∵AD∥BC,
∴△AEF∽△CBF,
∴,
∵AE=AD=BC,
∴,
∴CF=2AF,故②正确;
如图,过D作DM∥BE交AC于N,
∵DE∥BM,BE∥DM,
∴四边形BMDE是平行四边形,
∴BM=DE=BC,
∴BM=CM,
∴CN=NF,
∵BE⊥AC于点F,DM∥BE,
∴DN⊥CF,
∴DM垂直平分CF,
∴DF=DC,故③正确;
设AE=a,AB=b,则AD=2a,
由△BAE∽△ADC,有,即,
所以,b=,
∴,故④错误;
,
,
设,
,,,,
故⑤正确;
故选:D.
【题目】小王计划批发“山东大樱桃”和“泰国榴莲”两个品种的水果共120斤,樱桃和榴莲的批发价分别为32元/斤和40元/斤.设购买了樱桃x斤.
(1)若小王批发这两种水果正好花费了4400元,那么小王分别购买了多少斤樱桃和榴莲?填写下表,并列方程求解;
品种 | 批发价(元) | 购买斤数 | 小王应付的钱数(元) |
樱桃 | 32 | x | |
榴莲 | 40 |
(2)设小王购买两种水果的总花费为y元,试写出y与x之间的函数表达式.
(3)若要求所批发的榴莲的斤数不少于樱桃斤数的2倍,那么购买樱桃的数量为多少时,可使小王的总花费最少?这个最少花费是多少?