题目内容
【题目】在四边形ABDE中,C是BD边的中点.
(1)如图(1),若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为 ;(直接写出答案)
(2)如图(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;
(3)如图(3),BD=8,AB=2,DE=8,若ACE=135°,则线段AE长度的最大值是 (直接写出答案).
【答案】(1)AE=AB+DE;(2)AE=AB+DE+BD,证明详见解析;(3)10+4(或写成10+)
【解析】
(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论;
(2)在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG.可以求得CF=CG,△CFG是等边三角形,就有FG=CG=BD,进而得出结论;
(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG.
(1)AE=AB+DE;
理由:在AE上取一点F,使AF=AB,
∵AC平分∠BAE,
∴∠BAC=∠FAC.
在△ACB和△ACF中,
,
∴△ACB≌△ACF(SAS),
∴BC=FC,∠ACB=∠ACF,
∵C是BD边的中点,
∴BC=CD,
∴CF=CD,
∵∠ACE=90°,
∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°,
∴∠ECF=∠ECD,
在△CEF和△CED中,
,
∴△CEF≌△CED(SAS),
∴EF=ED,
∵AE=AF+EF,
∴AE=AB+DE;
故答案为:AE=AB+DE;
(2)猜想:AE=AB+DE+BD,
证明:在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG,
∵C是BD边的中点,
∴CB=CD=BD.
∵AC平分∠BAE,
∴∠BAC=∠FAC,
在△ACB和△ACF中,
,
∴△ACB≌△ACF(SAS),
∴CF=CB,
∴∠BCA=∠FCA,
同理可证:CD=CG,
∴∠DCE=∠GCE,
∵CB=CD,
∴CG=CF,
∵∠ACE=120°,
∴∠BCA+∠DCE=180°﹣120°=60°,
∴∠FCA+∠GCE=60°,
∴∠FCG=60°,
∴△FGC是等边三角形,
∴FG=FC=BD,
∵AE=AF+EG+FG,
∴AE=AB+DE+BD;
(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG,
∵C是BD边的中点,
∴CB=CD=BD,
∵△ACB≌△ACF(SAS),
∴CF=CB,
∴∠BCA=∠FCA,
同理可证:CD=CG,
∴∠DCE=∠GCE,
∵CB=CD,
∴CG=CF,
∵∠ACE=135°,
∴∠BCA+∠DCE=180°-135°=45°,
∴∠FCA+∠GCE=45°,
∴∠FCG=90°,
∴△FGC是等腰直角三角形,
∴FC=BD,
∵BD=8,
∴FC=4,
∴FG=4,
∵AE=AF+FG+GE,
∴AE=AB+4+DE,
∵AB=2,DE=8,
∴AE≤AF+FG+EG=10+4,
∴当A、F、G、E共线时AE的值最大2,最大值为10+4.
故答案为:10+4.