题目内容
【题目】如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG由图1所示的位置绕G点沿逆时针方向旋转(0<<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:
(1)求证:△CGH∽△AGK;
(2)连接HK,求证:KH∥EF;
(3)设AK=x,△CKH的面积为y,求y关于x的函数关系式,并求出y的最大值.
【答案】(1)证明见解析;(2)证明见解析;(3)y= , y最大值为.
【解析】试题分析:(1)GH:GK的值没发生变化,根据已知条件证明△AGK∽△CGH,由相似三角形的性质可得: =,又因为在Rt△ACG中,tan∠A==,所以GH:GK的比值是一个的值;
(2)连接HK,由(1)可知在Rt△KHG中,tan∠GKH==,所以∠GKH=60°,再根据三角形的内角和证明,∠E=∠EGF-∠F=90°-30°=60°,即可证得∠GKH=∠E=60°,利用同位角相等两线平行即可证明KH∥EF;
(3)设AK=x,存在x=1,使△CKH的面积最大,由(1)得△AGK∽△CGH,所以CH=AK=x,根据三角形的面积公式表示出S△CHK=CKCH=(2-x)x,再把二次函数的解析式化为顶点式即可求出x的值.
试题解析:
(1)证明:在Rt△ABC中,CG⊥AB,∠B=30°,
∴∠GCH=∠GAK=60°.
又∠CGH=∠AGK= ,
∴△CGH∽△AGK.
(2)证明:连接HK,
由(1)得△CGH∽△AGK,
∴.
在Rt△ACG中,tanA==,
∴.
在Rt△KHG中,tan∠GKH=,
∴∠GKH=60°.
∵Rt△EFG中,∠F=30°,∴∠E=60°,
∴∠GKH=∠E,
∴KH∥EF.
(3)解:由(1)得△CGH∽△AGK,
∴
由(2)知,∴.
∴CH=AK= .
在Rt△ABC中,∠B=30°,
∴AC=AB=2,
∴CK=AC-AK=2-x.
∴y=CK·CH= = .
又y=.
∴当x=1时,y有最大值为.
点睛: 本题考查的是相似三角形的判定与性质及图形旋转的性质、平行线的判定和性质、三角形的面积公式、二次函数的最值问题,题目的综合性很强,难度中等.