题目内容

【题目】如图ABC为等边三角形AECDADBE相交于点PBQADQPQ3PE1

1求证BEAD

2AD的长

【答案】(1)答案见解析;(2)7.

【解析】试题分析:(1)根据等边三角形的三条边都相等可得AB=CA,每一个角都是60°可得∠BAE=∠ACD=60°,然后利用“边角边”证明△ABE和△CAD全等,根据全等三角形对应边相等证明即可;
(2)根据全等三角形对应角相等可得∠CAD=∠ABE,然后求出∠BPQ=60°,再根据直角三角形两锐角互余求出∠PBQ=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出BP=2PQ,再根据AD=BE=BP+PE代入数据进行计算即可得解.

试题解析:(1)证明:∵△ABC为等边三角形,∴∠BAC=∠C=60°,AB=AC.

又∵AE=CD,∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,BE=AD.

(2)∵∠BPQ=∠BAP+∠ABE=∠BAP+∠PAE=∠BAC=60°,∵BQ⊥PQ,∴∠PBQ=30°,∴PB=2PQ=6,∴BE=PB+PE=7,∴AD=BE=7.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网