题目内容
【题目】已知等边△ABC中,点D为射线BA上一点,作DE=DC,交直线BC于点E,∠ABC的平分线BF交CD于点F,过点A作AH⊥CD于H,当EDC=30,CF=,则DH=______.
【答案】
【解析】连接AF.
∵△ABC是等边三角形,
∴AB=BC,∠ABC=∠ACB=∠BAC=60°.
∵DE=DC,∠EDC=30°,
∴∠DEC=∠DCE=75°,
∴∠ACF=75°-60°=15°.
∵BF平分∠ABC,
∴∠ABF=∠CBF.
在△ABF和△CBF中, ,
∴△ABF≌△CBF,
∴AF=CF,
∴∠FAC=∠ACF=15°,
∴∠AFH=15°+15°=30°.
∵AH⊥CD,
∴AH=AF=CF=.
∵∠DEC=∠ABC+∠BDE,
∴∠BDE=75°-60°=15°,
∴∠ADH=15°+30°=45°,
∴∠DAH=∠ADH=45°,
∴DH=AH=.
故答案为: .
练习册系列答案
相关题目