题目内容

【题目】a是不为1的有理数,我们把 称为a的差倒数.如:2的差倒数是=11的差倒数是.已知a1=a2a1的差倒数,a3a2的差倒数,a4a3的差倒数,,依此类推.

1)分别求出a2a3a4的值;

2)求a1+a2+a3+…+a3600的值.

【答案】1a2=a3=4a4= 25300

【解析】试题分析:(1)根据差倒数的定义进行计算即可得解;

2)根据计算可知,每三个数为一个循环组循环,求出每一个循环组的三个数的和,再用2160除以3求出正好有720个循环组,然后求解即可.

试题解析:1a1=

a2=

a3==4

a4==

2)根据(1)可知,每三个数为一个循环组循环

a1+a2+a3=3600÷3=1200

a1+a2+a3+…+a3600=×1200=5300

练习册系列答案
相关题目

【题目】数学问题:计算等差数列52,﹣1,﹣4……前n项的和.

问题探究:为解决上面的问题,我们从最简单的问题进行探究.

探究一:首先我们来认识什么是等差数列.

数学上,称按一定顺序排列的一列数为数列,其中排在第一位的数称为第1项,用a1表示:排在第二位的数称为第2项,用a2表示……排在第n位的数称为第n项,用an表示.一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差,公差通常用字母d表示.如:数列2468,….为等差数列,其中a12,公差d2

1)已知等差数列52,﹣1,﹣4,…则这个数列的公差d   ,第5项是   

2)如果一个数列a1a2a3a4,…是等差数列,且公差为d,那么根据定义可得到:

a2a1da3a2da4a3d,……anan1d,所以a2a1+da3a2+da1+2da4a1+3d,……:由此可得an   (用a1d的代数式表示)

3)对于等差数列52,﹣1,﹣4,…,an   请判断﹣2020是否是此等差数列的某一项,若是,请求出是第几项:若不是,说明理由.

探究二:二百多年前,数学王子高斯用他独特的方法快速计算出1+2+3+4++100的值.我们从这个算法中受到启发,用此方法计算数列123,…,n的前n项和: 可知

4)请你仿照上面的探究方式,解决下面的问题:

a1a2a3,…,an为等差数列的前n项,前n项和Sna1+a2+a3++an.证明:Snna1+

5)计算:计算等差数列52,﹣1,﹣4…前n项的和Sn(写出计算过程).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网