题目内容

【题目】如图,ABCCED均为等边三角形,且BCD三点共线.线段BEAD相交于点OAFBE于点F.若OF=1,则AF的长为(  )

A. 1 B. C. D. 2

【答案】C

【解析】

根据等边三角形的性质易证△BCE≌△ACD,根据全等三角形的性质可得∠CBE=∠CAD,再根据三角形外角的性质求得∠BOD=120°,即可求得∠AOF=60°,在Rt△AOF中,∠AOF=60°,OF=1,即可求得AF=.

∵△ABC和△CDE都是等边三角形,

∴BC=AC,CE=CD,∠ACB=∠DCE=60°,

∴∠BCE=∠ACD,

在△BCE和△ACD

∴△BCE≌△ACD(SAS)

∴∠CBE=∠CAD,

∵∠BOD=∠ABE+∠BAD,∠ABC=∠BAC=60°,

∴∠BOD=∠ABE+∠BAC+∠CAD=∠ABE+∠BAC+∠CBE=∠ABC+∠BAC=60°+60°=120°.

∴∠AOF=180°-∠BOD=180°-120°=60°,

Rt△AOF中,∠AOF=60°,OF=1,

∴AF=.

故答案为:.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网