题目内容
【题目】探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次.
(1)若参加聚会的人数为3,则共握手___次;若参加聚会的人数为5,则共握手___次;
(2)若参加聚会的人数为(为正整数),则共握手___次;
(3)若参加聚会的人共握手28次,请求出参加聚会的人数.
拓展:嘉嘉给琪琪出题:“若线段上共有个点(含端点,),线段总数为30,求的值.”
琪琪的思考:“在这个问题上,线段总数不可能为30.”琪琪的思考对吗?为什么?
【答案】探究:(1)3,10;(2);(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.
【解析】
探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;
(2)由(1)的结论结合参会人数为n,即可得出结论;
(3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;
拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为30,即可得出关于m的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.
探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=10.
故答案为:3;10.
(2)∵参加聚会的人数为n(n为正整数),
∴每人需跟(n-1)人握手,
∴握手总数为.
故答案为:.
(3)依题意,得:=28,
整理,得:n2-n-56=0,
解得:n1=8,n2=-7(舍去).
答:参加聚会的人数为8人.
拓展:琪琪的思考对,理由如下:
如果线段数为30,则由题意,得:=30,
整理,得:m2-m-60=0,
解得m1=,m2=(舍去).
∵m为正整数,
∴没有符合题意的解,
∴线段总数不可能为30.
【题目】为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:
捐款的数额(单位:元) | 5 | 10 | 20 | 50 | 100 |
人数(单位:个) | 2 | 4 | 5 | 3 | 1 |
关于这15名同学所捐款的数额,下列说法正确的是
A.众数是100 B.平均数是30 C.极差是20 D.中位数是20