题目内容
【题目】如图,边长为2菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第6个菱形的边长为_____.
【答案】18
【解析】
根据已知和菱形的性质可分别求得AC,AC1,AC2的长,从而可发现规律,根据规律不难求得第6个菱形的边长.
连接DB,
∵四边形ABCD是菱形,
∴AD=AB.AC⊥DB,
∵∠DAB=60°,
∴△ADB是等边三角形,
∴DB=AD=2,
∴BM=1,
∴AM=,
∴AC=2AM=2,
同理可得AC1=AC=6,AC2=AC1=6,AC3=AC2=18,AC4=AC3=18.
故答案为:18.
练习册系列答案
相关题目