题目内容
【题目】如图,在中,,在同一平面内,将绕点A旋转到的位置,使得,则________.
【答案】
【解析】
根据旋转的性质可得AC=AC′,∠BAC=∠B′AC′,再根据两直线平行,内错角相等求出∠ACC′=∠CAB,然后利用等腰三角形两底角相等求出∠CAC′,再求出∠BAB′=∠CAC′,从而得解.
∵△ABC绕点A旋转到△AB′C′的位置,
∴AC=AC′,∠BAC=∠B′AC′,
∵CC′∥AB,∠CAB=75°,
∴∠ACC′=∠CAB=75°,
∴∠CAC′=180°2∠ACC′=180°2×75°=30°
∵∠BAB′=∠BAC∠B′AC,
∠CAC′=∠B′AC′∠B′AC,
∴∠BAB′=∠CAC′=30°
故答案为:30°.
练习册系列答案
相关题目