题目内容

【题目】在⊙O中,AB为直径,C为⊙O上一点.
(Ⅰ)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=32°,求∠P的大小;

(Ⅱ)如图②,D为优弧ADC上一点,且DO的延长线经过AC的中点E,连接DC与AB相交于点P,若∠CAB=16°,求∠DPA的大小.

【答案】解:(Ⅰ)连接OC,如图①,

∵PC为切线,
∴OC⊥PC,
∴∠OCP=90°,
∵OA=OC,
∴∠OCA=∠CAB=32°,
∴∠POC=∠OCA+∠CAB=64°,
∴∠P=90°﹣∠POC=90°﹣64°=26°;
(Ⅱ)如图②,

∵点E为AC的中点,
∴OD⊥AC,
∴∠OEA=90°,
∴∠AOD=∠CAB+∠OEA=16°+90°=106°,
∴∠C= ∠AOD=53°,
∴∠DPA=∠BAC+∠C=16°+53°=69°
【解析】(Ⅰ)连接OC,如图①,根据切线的性质得∠OCP=90°,再根据等腰三角形的性质得到∠OCA=∠CAB=32°,则利用三角形外角性质可计算出∠POC,然后利用互余计算∠P的度数;(Ⅱ)如图②,根据垂径定理的推论,由点E为AC的中点得到OD⊥AC,则利用三角形外角性质得∠AOD=∠CAB+∠OEA=106°,再根据圆周角定理得到∠C= ∠AOD=53°,然后利用三角形外角性质可计算出∠DPA的度数.
【考点精析】通过灵活运用切线的性质定理,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网