题目内容
【题目】某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.
(1)要使每天获得利润700元,请你帮忙确定售价;
(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.
【答案】(1)13元或15元(2)14元,最大利润为720元
【解析】试题分析:(1)如果设每件商品提高x元,可先用x表示出单件的利润以及每天的销售量,然后根据总利润=单价利润×销售量列出关于x的方程,进而求出未知数的值.
(2)首先设应将售价提为x元时,才能使得所赚的利润最大为y元,根据题意可得:y=(x﹣8)(200﹣×10),然后化简配方,即可求得答案.
试题解析:(1)设每件商品提高x元,
则每件利润为(10+x﹣8)=(x+2)元,
每天销售量为(200﹣20x)件,
依题意,得:
(x+2)(200﹣20x)=700.
整理得:x2﹣8x+15=0.
解得:x1=3,x2=5.
∴把售价定为每件13元或15元能使每天利润达到700元;
答:把售价定为每件13元或15元能使每天利润达到700元.
(2)设应将售价定为x元时,才能使得所赚的利润最大为y元,
根据题意得:
y=(x﹣8)(200﹣×10),
=﹣20x2+560x﹣3200,
=﹣20(x2﹣28x)﹣3200,
=﹣20(x2﹣28x+142)﹣3200+20×142
=﹣20(x﹣14)2+720,
∴x=14时,利润最大y=720.
答:应将售价定为14元时,才能使所赚利润最大,最大利润为720元.
【题目】某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:
x(单位:台) | 10 | 20 | 30 |
y(单位:万元∕台) | 60 | 55 | 50 |
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求该机器的生产数量;
(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)