题目内容
【题目】甲、乙两车分别从相距420km的A、B两地相向而行,乙车比甲车先出发1小时,两车分别以各自的速度匀速行驶,途经C地(A、B、C三地在同一条直线上).甲车到达C地后因有事立即按原路原速返回A地,乙车从B地直达A地,甲、乙两车距各自出发地的路程y(千米)与甲车行驶所用的时间x(小时)的关系如图所示,结合图象信息回答下列问题:
(1)甲车的速度是 千米/时,乙车的速度是 千米/时;
(2)求甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;
(3)甲车出发多长时间后两车相距90千米?请你直接写出答案.
【答案】(1)105,60;(2)y=;(3)时,时或时.
【解析】
(1)根据题意和函数图象中的数据可以得到甲乙两车的速度;
(2)根据题意和函数图象中的数据可以求得甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;
(3)根据题意可知甲乙两车相距90千米分两种情况,从而可以解答本题.
(1)由图可得,
甲车的速度为:(210×2)÷4=420÷4=105千米/时,
乙车的速度为:60千米/时,
故答案为:105,60;
(2)由图可知,点M的坐标为(2,210),
当0≤x≤2时,设y=k1x,
∵M(2,210)在该函数图象上,
2k1=210,
解得,k1=105,
∴y=105x(0≤x≤2);
当2<x≤4时,设y=k2x+b,
∵M(2,210)和点N(4,0)在该函数图象上,
∴,得,
∴y=﹣105x+420(2<x≤4),
综上所述:甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=;
(3)设甲车出发a小时时两车相距90千米,
当甲从A地到C地时,
105a+60(a+1)+90=420,
解得,a=,
当甲从C地返回A地时,
(210﹣60×3)+(105﹣60)×(a﹣2)=90,
解得,a=,
当甲到达A地后,
420﹣60(a+1)=90,
解得,a=,
答:甲车出发时,时或时,两车相距90千米.