题目内容
【题目】在中,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连结EQ.设动点运动时间为x秒.
(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设的面积为,求与月份的函数关系式,并写出自变量的取值范围;
(3)当为何值时,为直角三角形.
【答案】详见解析
【解析】
(1)通过△AEP∽△ADC,列出比例关系,即可用含x的代数式表示AE、DE的长度;
(2)Q在BD上运动x秒后,求出DQ、CP,即可表示y与时间x的函数关系式,直接写出自变量x的取值范围;
(3)通过∠EQP=90°,∠QED=90°,分别通过三角形相似,列出比例关系,求出x的值,说明△EDQ为直角三角形.
解:(1)在,
(2),
当点Q在BD上运动x秒后,DQ=2-1.25x,则
即y与x的函数解析式为:,其中自变量的取值范围是:0<x<1.6
(3)分两种情况讨论:
①当
②当
综上所述,当x为2.5秒或3.1秒时,为直角三角形.
【题目】距离中考体考时间越来越近,年级想了解初三年级1000名学生周末在家体育锻炼的情况,在初三年级随机抽取了20名男生和20名女生,对他们周末在家的锻炼时间进行了调查,并收集得到了以下数据(单位:min):
男生:20 30 40 45 60 120 80 50 100 45 85 90 90 70 90 50 90 50 70 40
女生:75 30 120 70 60 100 90 40 75 60 75 75 80 90 70 80 50 80 100 90
统计数据,并制作了如下统计表:
时间 x | x≤30 | 30<x≤60 | 60<x≤90 | 90<x≤120 | |
男生 | 2 | 8 | 8 | 2 | |
女生 | 1 | m | n | 3 |
分析数据:两组数据的极差、平均数、中位数、众数如下表所示
极差 | 平均数 | 中位数 | 众数 | |
男生 | a | 65.75 | b | 90 |
女生 | c | 75.5 | 75 | d |
(1)请将上面的表格补充完整:m= ,n= ,a= ,b= ,c= ,d=
(2)已知该年级男女生人数差不多,根据调查的数据,估计初三年级周末在家锻炼的时间在 90min 以上的同学约有多少人?
(3)李老师看了表格数据后认为初三年级的女生周末锻炼做得比男生好,请你结合统计数据,写出两条支持李老师观点的理由.