题目内容
【题目】如图,矩形ABCD中,对角线AC、BD相交于点O,点P是线段AD上一动点(不与与点D重合),PO的延长线交BC于Q点.
(1)求证:四边形PBQD为平行四边形.
(2)若AB=6cm,AD=8cm,P从点A出发.以1cm/秒的速度向点D匀速运动.设点P运动时间为t秒,问四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
【答案】(1)详见解析;(2)点P运动时间为秒时,四边形PBQD是菱形.
【解析】
(1)依据矩形的性质和平行线的性质,通过全等三角形的判定定理判定△POD≌△QOB,所以OP=OQ,则四边形PBQD的对角线互相平分,故四边形PBQD为平行四边形.
(2)点P从点A出发运动t秒时,AP=tcm,PD=(4-t)cm.当四边形PBQD是菱形时,PB=PD=(4-t)cm.在直角△ABP中,根据勾股定理得AP2+AB2=PB2,即t2+32=(4-t)2,由此可以求得t的值.
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠PDO=∠QBO,
在△POD和△QOB中,
∴△POD≌△QOB(ASA),
∴OP=OQ;
又∵OB=OD
∴四边形PBQD为平行四边形;
(2)答:能成为菱形;
证明:t秒后AP=t,PD=8﹣t,
若四边形PBQD是菱形,
∴PD=BP=8﹣t,
∵四边形ABCD是矩形,
∴∠A=90°,
在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,
即62+t2=(8﹣t)2,
解得:t=.
即点P运动时间为秒时,四边形PBQD是菱形.
练习册系列答案
相关题目