题目内容
【题目】在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积.
(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.
(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.
【答案】(1)甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)y=36﹣2x;(3)安排甲队施工10天,乙队施工16天时,施工总费用最低为10万元.
【解析】
试题(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;
(2)根据题意得到100x+50y=1800,整理得:y=36﹣2x,即可解答.
(3)根据甲乙两队施工的总天数不超过26天,得到x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,根据一次函数的性质,即可解答.
解:(1)设乙工程队每天能完成绿化的面积是xm2,
根据题意得:,
解得:x=50,
经检验,x=50是原方程的解,
则甲工程队每天能完成绿化的面积是50×2=100(m2),
答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;
(2)根据题意,得:100x+50y=1800,
整理得:y=36﹣2x,
∴y与x的函数解析式为:y=36﹣2x.
(3)∵甲乙两队施工的总天数不超过26天,
∴x+y≤26,
∴x+36﹣2x≤26,
解得:x≥10,
设施工总费用为w元,根据题意得:
w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,
∵k=0.1>0,
∴w随x减小而减小,
∴当x=10时,w有最小值,最小值为0.1×10+9=10,
此时y=26﹣10=16.
答:安排甲队施工10天,乙队施工16天时,施工总费用最低.
【题目】某中学为促进课堂教学,提高教学质量,对本校七年级学生进行了一次“你最喜欢的课堂教学 方式”的问卷调查.根据收回的问卷,学校绘制了“频率分布表”和“频数分布条形图”.请你根据图表中提供 的信息,解答下列问题:
代 号 | 教学方式 | 最喜欢频 数 | 频 率 |
1 | 老师讲,学生听 | 20 | 0.10 |
2 | 老师提出问题,学生探索思考 | 100 | |
3 | 学生自行阅读教材,独立思考 | 30 | 0.15 |
4 | 分组讨论,解决问题 | 0.25 |
(1)补全“频率分布表”;
(2)在“频数分布条形图”中,将代号为4的部分补充完整;
(3)你最喜欢以上哪种教学方式或另外的教学方式,请提出你的建议,并简要说理由.