题目内容
已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
(1)A(-6,0)B(2,0)C(0,8)
(2) (3),
(4)存在
(2) (3),
(4)存在
试题分析:(1)解方程得,
∵点 B 在x轴的正半轴上, 点C在y轴的正半轴上, 且
∴点B的坐标为(2,0),点C的坐标为(0,8)
又∵抛物线的对称轴是直线
∴由抛物线的对称性可得点A的坐标为(-6,0)
(2)∵点C(0,8)在抛物线的图象上
∴c=8,将A(-6,0)、B(2,0)代入表达式,得
解得
∴所求抛物线的表达式为
(3)依题意,,则,
∵,,∴
∵EF∥AC ∴△BEF∽△BAC
∴ 即
∴EF=
过点F作FG⊥AB,垂足为G,则
∴= ∴FG=·=
∴
=
自变量m的取值范围是
(4)∵ 且,
∴当时,S有最大值,
∵,∴点E的坐标为(-2,0)
∴△BCE为等腰三角形.
点评:此类题目难度都不小,学生应该多尝试做此类练习题,一般来讲,都有一定规律在里面,学生可以多做,以求举一反三
练习册系列答案
相关题目