题目内容
【题目】如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC上,AB=3,BC=4
(1)求的值;
(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP
(Ⅰ)求的值;
(Ⅱ)判断CP与AF的位置关系,并说明理由.
【答案】(1);(2)(Ⅰ);(Ⅱ)CP⊥AF,理由:见解析.
【解析】
(1)根据矩形的性质得到∠B=90°,根据勾股定理得到AC=5,根据相似三角形的性质即可得到结论;
(2)(Ⅰ)连接CF,根据旋转的性质得到∠BCG=∠ACF,根据相似三角形的判定和性质定理得到结论;
(Ⅱ)根据相似三角形的性质得到∠BGC=∠AFC,推出点C,F,G,P四点共圆,根据圆周角定理得到∠CPF=∠CGF=90°,于是得到结论.
(1)∵四边形ABCD是矩形,
∴∠B=90°,
∵AB=3,BC=4,
∴AC=5,
∴,
∵四边形CEFG是矩形,
∴∠FGC=90°,
∴GF∥AB,
∴△CGF∽△CBA,
∴,
∵FG∥AB,
∴;
(2)(Ⅰ)连接CF,
∵把矩形CEFG绕点C顺时针旋转到图②的位置,
∴∠BCG=∠ACF,
∵,
∴△BCG∽△ACF,
∴;
(Ⅱ)CP⊥AF,
理由:∵△BCG∽△ACF,
∴∠BGC=∠AFC,
∴点C,F,G,P四点共圆,
∴∠CPF=∠CGF=90°,
∴CP⊥AF.
练习册系列答案
相关题目