题目内容

【题目】如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.

(1)若AB=4,求的长;(结果保留π)
(2)求证:四边形ABMC是菱形.

【答案】
(1)

解:∵OA=OB,E为AB的中点,

∴∠AOE=∠BOE,OE⊥AB,

∵OE⊥AB,E为OD中点,

∴OE=OD=OA,

∴在Rt△AOE中,∠OAB=30°,∠AOE=60°,∠AOB=120°,

设OA=x,则OE=x,AE=x,

∵AB=4

∴AB=2AE=x=4

解得:x=4,

的长l==


(2)

证明:由1得∠OAB=∠OBA=30°,∠BOM=∠COM=60°,∠AMB=30°,

∴∠BAM=∠BMA=30°,

∴AB=BM,

∵BM为圆O的切线,连接OB,如图所示,

∴OB⊥BM,

在△COM和△BOM中,

∴△COM≌△BOM(SAS),

∴CM=BM,∠CMO=∠BMO=30°,

∴CM=AB,∠CMO=∠MAB,

∴CM∥AB,

∴四边形ABMC为菱形.


【解析】(1)连接OB,由E为OD中点,得到OE等于OA的一半,在直角三角形AOE中,得出∠OAB=30°,进而求出∠AOE与∠AOB的度数,设OA=x,利用勾股定理求出x的值,确定出圆的半径,利用弧长公式即可求出的长;
(2)由第一问得到∠BAM=∠BMA,利用等角对等边得到AB=MB,利用SAS得到三角形OCM与三角形OBM全等,利用全等三角形对应边相等得到CM=BM,等量代换得到CM=AB,再利用全等三角形对应角相等及等量代换得到一对内错角相等,进而确定出CM与AB平行,利用一组对边平行且相等的四边形为平行四边形得到ABMC为平行四边形,最后由邻边相等的平行四边形为菱形即可得证.
【考点精析】关于本题考查的菱形的判定方法和切线的性质定理,需要了解任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网