题目内容
【题目】如图,在正方形ABCD中,E是AB边上一点,F是AD延长线上一点,BE=DF.
(1)求证:CE=CF;
(2)若点G在AD边上,且∠GCE=45°,BE=3,DG=5,求GE的长.
【答案】(1)见解析;(2)8.
【解析】(1)根据正方形性质,由(SAS)证△CBE≌△CDF,可得CE=CF;
(2)由(1)△CBE≌△CDF,得∠BCE=∠DCF,故∠BCE+∠ECD=∠DCF+∠ECD,因此,∠ECF=∠BCD=90°,再证∠GCF=∠ECF-∠GCE=45°=∠GCE,可证得△ECG≌△FCG,所以GE=GF=DG+DF=DG+BE.
(1)证明:∵四边形ABCD是正方形,
∴BC=DC,∠B=∠FDC=90°.
在△CBE和△CDF中,
EB=DF,∠B=∠FDC,BC=DC,
∴△CBE≌△CDF(SAS),
∴CE=CF;
(2)解:由(1)得△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,
即∠ECF=∠BCD=90°.
又∵∠GCE=45°,
∴∠GCF=∠ECF-∠GCE=45°=∠GCE.
∵在△ECG与△FCG中,
CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG(SAS),
∴GE=GF=DG+DF=DG+BE=3+5=8.
练习册系列答案
相关题目