题目内容
【题目】如图,在△ABC中,CD⊥AB,且CD2=ADDB,AE平分∠CAB交CD于F,∠EAB=∠B,CN=BE.①CF=BN;②∠ACB=90°;③FN∥AB;④AD2=DFDC.则下列结论正确的是( )
A. ①②④ B. ②③④ C. ①②③④ D. ①③
【答案】C
【解析】
根据已知条件可证△ADC∽△CDB,得出∠ACB=90°.根据等量关系及等腰三角形的性质得到CF=BN.根据同位角相等,证明FN∥AB.证明△ADF∽△CDA,根据相似三角形的性质得出AD2=DFDC.
①∵AE平分∠CAB,
∴∠CAE=∠DAF,
∴△CAE∽△DAF,
∴∠AFD=∠AEC,
∴∠CFE=∠AEC,
∴CF=CE,
∵CN=BE,
∴CE=BN,
∴CF=BN,故本选项正确;
②∵CD⊥AB,
∴∠ADC=∠CDB=90°,
∵CD2=ADDB,
∴,
∴△ADC∽△CDB,
∴∠ACD=∠B,
∴∠ACB=90°,故本选项正确;
③∵∠EAB=∠B,
∴EA=EB,
易知:∠ACF=∠ABC=∠EAB=∠EAC,
∴FA=FC,
易证:CF=CE,
∴CF=AF=CE,
∵FA=FC=BN,EA=EB,
∴EF=CE,
∴,
∵∠FEN=∠AEB,
∴△EFN∽△EAB,
∴∠EFN=∠EAB,
∴FN∥AB,故本选项正确;
④易证△ADF∽△CDA,
∴AD2=DFDC,故本选项正确;
故选:C.
练习册系列答案
相关题目